ESERCITAZIONE FINALE
(21 gennaio 2026)

Corso: 3770/10840604-011/606/DEC/25

Titolo: ESPERTO IN SICUREZZA INFORMATICA - ED. ROVIGO

Sede: ROVIGO (RO), Via N. Badaloni 2

Modulo 3: MONITORAGGIO DELLA SICUREZZA DEL SISTEMA INFORMATIVO
Docente: Davide Gessi

Corsista: Massimo Zeri Guerra

Valutazione: 10/10

Securing Software Esercitazione

o

. Attraverso quali tecniche un attore malevolo potrebbe “craccare” un software, cioé

bypassare la registrazione o il pagamento per poterlo usare gratuitamente?

. Distingui la natura dei due tipi di attacchi “cross-site” discussi:

- Cross-Site Scripting (XSS)
- Cross-Site Request Forgery (CSRF)

. Perché é necessario “fare I'escape” (cioé neutralizzare) alcuni caratteri nei dati di input?

Nel contesto di SQL, che cos’é una prepared statement (istruzione preparata)?

. Perché la validazione lato client (client-side validation) é considerata meno sicura rispetto

a quella lato server (server-side validation)?

. Riferimento alla vignetta GeekHero

Dal punto di vista pratico, la vignetta sopra ha probabilmente ragione nel rappresentare il
comportamento della maggior parte degli utenti verso il software open-source.

Tuttavia, anche se questo fosse la tua opinione, perché potrebbe comunque essere una
buona idea usare (o sviluppare) piu software open-source, dal punto di vista della
sicurezza informatica?

In che modo i package manager (come apt, yum, npm, ecc.) sono simili agli app store
(Apple App Store, Google Play Store, Microsoft Store, ecc.) dal punto di vista della
cybersecurity?

Contro quale tipo di minaccia aiuta a difendersi ’uso del campo Content-Security-Policy
(CSP) nel nostro codice sorgente?

. Fornisci un esempio concreto di una situazione in cui potresti voler usare il metodo HTTP

POST invece del metodo GET.

10.Heartbleed (CVE-2014-0160)

Il bug noto come Heartbleed, scoperto nel 2014, genero un’enorme preoccupazione su
Internet: fu uno dei primi casi in cui una vulnerabilita informatica venne diffusa anche
dai media generalisti, mentre i ricercatori di sicurezza cercavano di avvisare il pubblico e
incoraggiare un aggiornamento urgente dei sistemi.

Leggi informazioni su Heartbleed, ad esempio dalla pagina Wikipedia o da altre fonti
affidabili (come un video divulgativo).

Perché Heartbleed rappresentava una minaccia cosi grave per la sicurezza degli utenti?
Qua la vignetta obbligatoria xkcd

http://www.geekherocomic.com/2009/02/11/everything-is-open-source-actually/index.html
https://xkcd.com/1354/

Risposte:

1)Attraverso quali tecniche un attore malevolo potrebbe “craccare” un software, cioé bypassare la
registrazione

o il pagamento per poterlo usare gratuitamente?
R)

Attraverso tecniche :

Reverse engineering, debugging, patching binario, keygen, hooking, emulazione licenza,
tampering memoria.

Le tecniche principali sono: reverse engineering per analizzare il codice con
disassemblatori/debugger e trovare i controlli di licenza (es. if registrato), patching per
modificare istruzioni binarie e bypassare i check, keygen per ricreare l'algoritmo di
validazione delle seriali, hooking per intercettare API e mentire sul software, emulazione
per fingere chiavi hardware/file, tampering per alterare variabili runtime come flag
licensed

Eccellente. lessico da addetto ai lavori.

2) Distingui la natura dei due tipi di attacchi “cross-site” discussi:
- Cross-Site Scripting (XSS)
- Cross-Site Request Forgery (CSRF)

R)

XSS: inietta ed esegue codice JS nel browser della vittima (es. via input non escaped in cerca.php),
sfruttando il contesto

della sessione per azioni malevole (cambio password, worm). CSRF: forza richieste non autorizzate dal
browser della vittima

autenticata verso un altro sito (es. img src o form auto-submit), usando i suoi cookie senza eseguire
codice sul target.

XSS (Reflected/Stored) € code injection client-side: input utente (es. <script>alert('attacco')</
interpretato/eseguito come HTML/JS nella pagina vittima, offuscato con btoa/urlencode per link
phishing. CSRF ¢ request

forgery: sfrutta autenticazione esistente per azioni indesiderate (es. compra via GET in o
POST auto-submit),

prevenuto con token CSRF.

Molto buono. Conosci il XSS/CSRF anche oltre il minimo richiesto.

3) Perché € necessario “fare I'escape” (cioé neutralizzare) alcuni caratteri nei dati di input?

R) L'escaping neutralizza caratteri speciali negli input utente (es. <, >, &, ", ') per prevenire iniezioni
malevole come

XSS o SQLi, trasformandoli in entita sicure (es. <, >). Senza, un input come <script>alert('attacco')</

eseguito come codice JS invece di testo visualizzato.

Prevenzione XSS: Caratteri HTML/JS (<script>) chiudono tag prematuramente, iniettando codice
eseguibile nel browser vittima.

Protezione SQL/Command Injection: Apici o ; alterano query (es. ' OR 1=1; DROP TABLE), eseguendo
comandi non autorizzati.

Output Sicuro: Prima di emettere input in HTML/PHP/SQL, escape rende innocui (es.
<p><script>alert('attacco')</

Esempi di Escaping:

| Contesto | Caratteri Pericolosi | Escape Esempio |

| HTML | <>&"' | <> & "' Securing-Software.htm |
|sQL |';- | " o prepared statements Securing-Software.htm |
| Shell |; " $ | escapeshellarg() [file:235]

Corretto. Concetto giusto
4) Nel contesto di SQL, che cos’é una prepared statement (istruzione preparata)?

R) Una prepared statement & un template SQL precompilato con segnaposto (?) per parametri utente,
separando struttura query

da dati per prevenire SQL injection tramite escaping automatico (es. raddoppiamento apici).
Parametri vengono bound
separatamente, trattando input come dati literals anziché codice eseguibile.

Come Funziona:

Preparazione: Query fissa con placeholder, es. SELECT * FROM users WHERE username = ? AND
password = ?.

Binding: Input utente passati come parametri sicuri, es. username="davide" — 'davide' (escaped).

Esecuzione: DB interpreta solo struttura; input non altera logica (es. ' OR 1=1 diventa harmless).

Esempi di SQL Injection Bloccata :

| Query Vulnerabile | Input Malevolo | Risultato
|
| SELECT * FROM users WHERE username = 'suser' | davide' DELETE FROM users -- | Esegue
DROP Securing-Software.htm |
| Prepared: SELECT * FROM users WHERE username = ? | davide' DELETE FROM users -- | Cerca
utente letterale, no DROP Securing-Software.htm |
Corretto. Concetto giusto

5) Perché la validazione lato client (client-side validation) & considerata meno sicura rispetto a quella
lato server
(server-side validation)?

R) La validazione client-side & meno sicura perché eseguita nel browser utente (es. JS o attributi HTML
come disabled/required),

facilmente bypassabile con DevTools (Shift+Ctrl+l) modificando codice o inviando richieste dirette.
Server-side e affidabile:

controlla dati sul server fidato, non manipolabile da client, replicando regole front-end per
sicurezza.

Spiegazioni Salienti Keys point :

Bypass Facile: Utente rimuove disabled da checkbox sconto o required da input, inviando form
valido server-side.

Non Fidarsi Client: "Non fidarsi di quello che inserisce un utente; server deve controllare sempre
SERVER side".

UX vs Sicurezza: Client-side migliora esperienza (feedback immediato), ma server-side protegge da
abusi (es. form shop).

Confronto :

| Tipo | Pro | Contro | Esempio Bypass |

I | | |

| Client | Veloce, UX buona | Bypassabile | Rimuovi disabled DevTools Securing-Software.htm |

| Server | Sicura, autorevole | Pit lenta | Non bypassabile Securing-Software.htm |
Ottimo. Chiaro, centrato,

6) Riferimento alla vignetta GeekHero

Dal punto di vista pratico, la vignetta sopra ha probabilmente ragione nel rappresentare il
comportamento della maggior

parte degli utenti verso il software open-source.Tuttavia, anche se questo fosse la tua opinione,
perché potrebbe comunque

essere una buona idea usare (o sviluppare) piu software open-source, dal punto di vista della
sicurezza informatica?

R) Anche se molti utenti non ispezionano il codice, I'open-source offre vantaggi di sicurezza grazie alla
comunita globale

di esperti che lo fa al posto loro. Questo approccio collettivo identifica e risolve vulnerabilita piu
rapidamente

rispetto al software closed-source.

Trasparenza Codice

Il codice sorgente pubblico permette audit indipendenti, verificando assenza di backdoor o malware
nascosti.

Esperti mondiali lo esaminano, applicando "Linus's Law": con abbastanza occhi, tutti i bug sono
superficiali.

Patch Rapide

Vulnerabilita scoperte portano a fix immediati dalla comunita, senza dipendere da un singolo vendor.
Progetti

come Linux o Apache beneficiano di aggiornamenti veloci, riducendo tempi di esposizione.

Community Audits

Sviluppo collaborativo include revisioni continue da security researcher e developer. Bug bounty e
contributi

globali rafforzano la resilienza, superando ispezioni interne di software proprietari.

Confronto Sicurezza :

| Aspetto | Open-Source | Closed-Source |

| | I

| Audit | Globale, rapido negg | Interno, limitato korte |

| Fix Vulnerabilita | Community immediata horilla | Vendor-dipendente linuxsecurity |
| Backdoor Rischio | Basso (visibile) negg | Alto (nascosto) linuxsecurity |

Buono. Hai fatto un saggio

7) In che modo i package manager (come apt, yum, npm, ecc.) sono simili agli app store (Apple App
Store, Google Play Store,

Microsoft Store, ecc.) dal punto di vista della cybersecurity?

R) | package manager come apt, yum e npm sono simili agli app store perché entrambi forniscono
repository centralizzati

di software pre-verificati, riducendo rischi da download casuali. Entrambi usano firme digitali per
garantire integrita
e autenticita pacchetti, prevenendo manomissioni

Firma Digitale

Package manager (apt, rpm) firmano pacchetti con chiavi GPG, verificando provenienza da fonti
ufficiali.
App store (Apple, Google) usano firme per hash software, bloccando installazioni alterate.

Repository Centrali

Offrono update automatici sicuri da canali fidati, minimizzando supply chain attacks. Evitano

download da siti
non verificati, simili a restrizioni app store su sideload.

Controllo Accesso

Limitano installazioni a fonti approvate, gestendo permessi e dipendenze. Trend: OS integrano
package
manager come app store per ecosistemi chiusi ma sicuri

Confronto :

| Feature | Package Manager | App Store |

I |

| Firma | GPG keys (apt/rpm) Securing-Software.htm | Private key hash Securing-Software.htm |

| Update | Automatici sicuri Securing-Software.htm | Centralizzati Securing-Software.htm |

| Limiti | Repo ufficiali Securing-Software.htm | No sideload Securing-Software.htm |
Corretto.

8) Contro quale tipo di minaccia aiuta a difendersi I'uso del campo Content-Security-Policy (CSP) nel
nostro codice sorgente?

R) Il campo Content-Security-Policy (CSP) difende principalmente contro Cross-Site Scripting (XSS),
bloccando

inline script e risorse esterne non autorizzate. Specifica sorgenti per script, stili e connessioni,
prevenendo

esecuzione di codice malevolo iniettato.

Blocco Inline Script

CSP con script-src 'self' permette solo script da file del dominio, bloccando
<script>alert('xss')</script> inline

da XSS. Previene eval o caricamenti esterni.

Controllo Risorse

Header come Content-Security-Policy: script-src https://sguaff.com limita a domini fidati, fermando
fetch

cross-domain o stili malevoli. Anche connect-src self blocca richieste outbound.

Esempi Protezione

script-src 'self': Solo script locali, no inline.

style-src 'self": Blocca CSS inline/esterne.

vedi Tabaella :

https://sguaff.com/

| Direttiva CSP | Minaccia Bloccata | Esempio Header Securing-Software.htm |
I | |
| script-src | Inline XSS | script-src httpssguaff.com |
|connect-src | Fetch cross-site | connect-src self |
Molto buono. CSP spiegata bene, anche troppo in dettaglio.

9) Fornisci un esempio concreto di una situazione in cui potresti voler usare il metodo HTTP POST
invece del metodo GET.

R) Un esempio concreto € I'acquisto di un prodotto su un e-commerce come Amazon, dove un link
GET semplice

puo essere abusato in un attacco CSRF tramite un tag img malevolo. Usa POST con un form per
nascondere parametri

sensibili come I'ID prodotto nell'URL e richiedere un'azione intenzionale.

Protezione CSRF

GET espone parametri (es. https://amazon.it/dp/), caricabili involontariamente via
causando acquisti non autorizzati. POST nel form richiede submit esplicito:
<form method="post" action="..."><input name="dp" value="BO7XLQ2FSK"><button>

Vantaggi POST

Parametri nel body, non URL, prevengono log sensibili e accessi accidentali. Aggiungi CSRF token
per extra sicurezza: <input name="csrftoken" value="1234abcd">.

Vedi tabella:

| Metodo | Esempio URL/Form | Rischio CSRF Securing-Software.htm |

| | |

| GET | /buy?dp=B07XLQ2FSK | Alto (img tag) |

| POST | <form method=post> | Basso (richiede click) |
Buona. Ma leggermente forzata. POST diverso da protezione CSRF

10) Heartbleed (CVE-2014-0160)

Il bug noto come Heartbleed, scoperto nel 2014, generd un’enorme preoccupazione su Internet: fu
uno dei primi casi

in cui una vulnerabilita informatica venne diffusa anche dai media generalisti, mentre i ricercatori di
sicurezza

cercavano di avvisare il pubblico e incoraggiare un aggiornamento urgente dei sistemi.Leggi
informazioni su Heartbleed,

ad esempio dalla pagina Wikipedia o da altre fonti affidabili (come un video divulgativo).

Perché Heartbleed rappresentava una minaccia cosi grave per la sicurezza degli utenti?

R) Heartbleed (CVE-2014-0160) era grave perché permetteva a un attaccante remoto di leggere fino a

https://amazon.it/dp/B07XLQ2FSK
http://httpssguaff.com/

64KB di memoria

server per richiesta heartbeat TLS, leakando dati sensibili come chiavi private senza privilegi o
autenticazione.

Colpiva OpenSSL 1.0.1-1.0.1f, usato dal 17% dei server HTTPS, esponendo password, cookie e
certificati per oltre

due anni.
Meccanismo Vulnerabilita

Mancato controllo bounds prima di memcpy() in heartbeat: I'attaccante invia lunghezza falsa (es.
64KB invece di

3 byte), server copia memoria extra e la restituisce. Ripetibile per estrarre dati critici come session
keys.

Impatto Massiccio

Esposizione chiavi private: decrittazione traffico passato/futuro, impersonificazione siti.
Dati rubati: credenziali, carte credito, record medici; difficile rilevare.
Vulnerabile 24-55% siti HTTPS; attacco facile con PoC, persistente da 2012.

Conseguenze Utenti

Richiedeva cambio password globali, reissuing certificati (costo centinaia milioni), panico mediatico
per breach silenti su VPN/VOIP interni. Persiste su legacy systems.

| Aspetto | Rischio Principale | Esempio Conseguenza owasp+1 |
I I I

| Accesso | Remoto, anonimo | Leak chiavi private senza login |

| Dati Esposti | Memoria heap casuale | Password, cookie, certificati |
| Durata | Oltre 2 anni | Breach retroattivi possibili |

| Mitigazione | Patch + revoke certs | Cambio password worldwide |

Ottimo. quasi da presentazione OWASP. Fuori scala per un quiz

	Securing Software Esercitazione
	Risposte:

