
ESERCITAZIONE FINALE
(21 gennaio 2026)

Corso: 3770/10840604-011/606/DEC/25  
Titolo: ESPERTO IN SICUREZZA INFORMATICA – ED. ROVIGO  
Sede: ROVIGO (RO), Via N. Badaloni 2

Modulo 3: MONITORAGGIO DELLA SICUREZZA DEL SISTEMA INFORMATIVO

Docente: Davide Gessi

Corsista: Massimo Zeri Guerra

Valutazione: 10/10



Securing Software Esercitazione

1. Attraverso quali tecniche un attore malevolo potrebbe “craccare” un software, cioè 
bypassare la registrazione o il pagamento per poterlo usare gratuitamente? 

2. Distingui la natura dei due tipi di attacchi “cross-site” discussi:
- Cross-Site Scripting (XSS)
- Cross-Site Request Forgery (CSRF)

3. Perché è necessario “fare l'escape” (cioè neutralizzare) alcuni caratteri nei dati di input? 
4. Nel contesto di SQL, che cos’è una prepared statement (istruzione preparata)? 
5. Perché la validazione lato client (client-side validation) è considerata meno sicura rispetto 

a quella lato server (server-side validation)? 
6. Riferimento alla vignetta GeekHero

Dal punto di vista pratico, la vignetta sopra ha probabilmente ragione nel rappresentare il 
comportamento della maggior parte degli utenti verso il software open-source.
Tuttavia, anche se questo fosse la tua opinione, perché potrebbe comunque essere una 
buona idea usare (o sviluppare) più software open-source, dal punto di vista della 
sicurezza informatica?

7. In che modo i package manager (come apt, yum, npm, ecc.) sono simili agli app store 
(Apple App Store, Google Play Store, Microsoft Store, ecc.) dal punto di vista della 
cybersecurity? 

8. Contro quale tipo di minaccia aiuta a difendersi l’uso del campo Content-Security-Policy 
(CSP) nel nostro codice sorgente? 

9. Fornisci un esempio concreto di una situazione in cui potresti voler usare il metodo HTTP 
POST invece del metodo GET. 

10.Heartbleed (CVE-2014-0160)
Il bug noto come Heartbleed, scoperto nel 2014, generò un’enorme preoccupazione su 
Internet: fu uno dei primi casi in cui una vulnerabilità informatica venne diffusa anche 
dai media generalisti, mentre i ricercatori di sicurezza cercavano di avvisare il pubblico e 
incoraggiare un aggiornamento urgente dei sistemi.
Leggi informazioni su Heartbleed, ad esempio dalla pagina Wikipedia o da altre fonti 
affidabili (come un video divulgativo).
Perché Heartbleed rappresentava una minaccia così grave per la sicurezza degli utenti?
Qua la vignetta obbligatoria xkcd 

http://www.geekherocomic.com/2009/02/11/everything-is-open-source-actually/index.html
https://xkcd.com/1354/


Risposte:

1)Attraverso quali tecniche un attore malevolo potrebbe “craccare” un software, cioè bypassare la 
registrazione
  o il pagamento per poterlo usare gratuitamente?

R)
 
 Attraverso tecniche : 
 Reverse engineering, debugging, patching binario, keygen, hooking, emulazione licenza,   
 tampering memoria.

 Le tecniche principali sono: reverse engineering per analizzare il codice con  
 disassemblatori/debugger e trovare i controlli di licenza (es. if registrato), patching per  
 modificare istruzioni binarie e bypassare i check, keygen per ricreare l’algoritmo di 
 validazione delle seriali, hooking per intercettare API e mentire sul software, emulazione  
 per fingere chiavi hardware/file, tampering per alterare variabili runtime come flag  
 licensed
Eccellente. lessico da addetto ai lavori.

2) Distingui la natura dei due tipi di attacchi “cross-site” discussi:
- Cross-Site Scripting (XSS)
- Cross-Site Request Forgery (CSRF)

R)

XSS: inietta ed esegue codice JS nel browser della vittima (es. via input non escaped in cerca.php), 
sfruttando il contesto 
della sessione per azioni malevole (cambio password, worm). CSRF: forza richieste non autorizzate dal 
browser della vittima 
autenticata verso un altro sito (es. img src o form auto-submit), usando i suoi cookie senza eseguire 
codice sul target.

XSS (Reflected/Stored) è code injection client-side: input utente (es. <script>alert('attacco')</
interpretato/eseguito come HTML/JS nella pagina vittima, offuscato con btoa/urlencode per link 
phishing. CSRF è request 
forgery: sfrutta autenticazione esistente per azioni indesiderate (es. compra via GET in <img src> o 
POST auto-submit), 
prevenuto con token CSRF.
Molto buono. Conosci il XSS/CSRF anche oltre il minimo richiesto.

3) Perché è necessario “fare l'escape” (cioè neutralizzare) alcuni caratteri nei dati di input?



R) L'escaping neutralizza caratteri speciali negli input utente (es. <, >, &, ", ') per prevenire iniezioni 
malevole come
   XSS o SQLi, trasformandoli in entità sicure (es. <, >). Senza, un input come <script>alert('attacco')</
   eseguito come codice JS invece di testo visualizzato.   
   Prevenzione XSS: Caratteri HTML/JS (<script>) chiudono tag prematuramente, iniettando codice 
eseguibile nel browser vittima.
   Protezione SQL/Command Injection: Apici o ; alterano query (es. ' OR 1=1; DROP TABLE), eseguendo 
comandi non autorizzati.
   Output Sicuro: Prima di emettere input in HTML/PHP/SQL, escape rende innocui (es. 
<p><script>alert('attacco')</

   Esempi di Escaping: 

   | Contesto | Caratteri Pericolosi | Escape Esempio                                  |
   | -------- | -------------------- | ------------------------------
   | HTML     | < > & " '            | < > & " ' Securing-Software.htm                 |
   | SQL      | ' ; --               | '' o prepared statements Securing-Software.htm  |
   | Shell    | ; ` $                | escapeshellarg() [file:235]                    

Corretto. Concetto giusto
4 ) Nel contesto di SQL, che cos’è una prepared statement (istruzione preparata)?

R)  Una prepared statement è un template SQL precompilato con segnaposto (?) per parametri utente, 
separando struttura query
    da dati per prevenire SQL injection tramite escaping automatico (es. raddoppiamento apici). 
Parametri vengono bound 
    separatamente, trattando input come dati literals anziché codice eseguibile.

    Come Funziona:

    Preparazione: Query fissa con placeholder, es. SELECT * FROM users WHERE username = ? AND 
password = ?. 
    Binding: Input utente passati come parametri sicuri, es. username="davide" → 'davide' (escaped).
    Esecuzione: DB interpreta solo struttura; input non altera logica (es. ' OR 1=1 diventa harmless).

    Esempi di SQL Injection Bloccata : 

    | Query Vulnerabile                                | Input Malevolo               | Risultato                                             |
    | ------------------------------
    | SELECT * FROM users WHERE username = '$user'     | davide' DELETE FROM users -- | Esegue 
DROP Securing-Software.htm                     |
    | Prepared: SELECT * FROM users WHERE username = ? | davide' DELETE FROM users -- | Cerca 
utente letterale, no DROP Securing-Software.htm |
Corretto. Concetto giusto



5)  Perché la validazione lato client (client-side validation) è considerata meno sicura rispetto a quella 
lato server 
    (server-side validation)?

R)  La validazione client-side è meno sicura perché eseguita nel browser utente (es. JS o attributi HTML 
come disabled/required),
    facilmente bypassabile con DevTools (Shift+Ctrl+I) modificando codice o inviando richieste dirette. 
Server-side è affidabile:
    controlla dati sul server fidato, non manipolabile da client, replicando regole front-end per 
sicurezza.
    
    Spiegazioni Salienti Keys point :

    Bypass Facile: Utente rimuove disabled da checkbox sconto o required da input, inviando form 
valido server-side.

    Non Fidarsi Client: "Non fidarsi di quello che inserisce un utente; server deve controllare sempre 
SERVER side".

    UX vs Sicurezza: Client-side migliora esperienza (feedback immediato), ma server-side protegge da 
abusi (es. form shop).

    Confronto :
    
    | Tipo   | Pro                | Contro      | Esempio Bypass                                  |
    | ------ | ------------------ | ----------- | ------------------------------
    | Client | Veloce, UX buona   | Bypassabile | Rimuovi disabled DevTools Securing-Software.htm |
    | Server | Sicura, autorevole | Più lenta   | Non bypassabile Securing-Software.htm           |
Ottimo. Chiaro, centrato,

6) Riferimento alla vignetta GeekHero
   Dal punto di vista pratico, la vignetta sopra ha probabilmente ragione nel rappresentare il 
comportamento della maggior
   parte degli utenti verso il software open-source.Tuttavia, anche se questo fosse la tua opinione, 
perché potrebbe comunque
   essere una buona idea usare (o sviluppare) più software open-source, dal punto di vista della 
sicurezza informatica?
  
R) Anche se molti utenti non ispezionano il codice, l'open-source offre vantaggi di sicurezza grazie alla 
comunità globale
   di esperti che lo fa al posto loro. Questo approccio collettivo identifica e risolve vulnerabilità più 
rapidamente 
   rispetto al software closed-source.

   Trasparenza Codice



   Il codice sorgente pubblico permette audit indipendenti, verificando assenza di backdoor o malware 
nascosti.
   Esperti mondiali lo esaminano, applicando "Linus's Law": con abbastanza occhi, tutti i bug sono 
superficiali.

   Patch Rapide

   Vulnerabilità scoperte portano a fix immediati dalla comunità, senza dipendere da un singolo vendor. 
Progetti
   come Linux o Apache beneficiano di aggiornamenti veloci, riducendo tempi di esposizione.

   Community Audits 
 
  Sviluppo collaborativo include revisioni continue da security researcher e developer. Bug bounty e 
contributi 
  globali rafforzano la resilienza, superando ispezioni interne di software proprietari.
  
  Confronto Sicurezza : 

  | Aspetto           | Open-Source                  | Closed-Source                  |
  | ----------------- | ---------------------------- | ------------------------------
  | Audit             | Globale, rapido negg        | Interno, limitato korte         |
  | Fix Vulnerabilità | Community immediata horilla | Vendor-dipendente linuxsecurity |
  | Backdoor Rischio  | Basso (visibile) negg       | Alto (nascosto) linuxsecurity   |

Buono. Hai fatto un saggio
 
 7) In che modo i package manager (come apt, yum, npm, ecc.) sono simili agli app store (Apple App 
Store, Google Play Store,
    Microsoft Store, ecc.) dal punto di vista della cybersecurity?

 R) I package manager come apt, yum e npm sono simili agli app store perché entrambi forniscono 
repository centralizzati 
    di software pre-verificati, riducendo rischi da download casuali. Entrambi usano firme digitali per 
garantire integrità
    e autenticità pacchetti, prevenendo manomissioni

    Firma Digitale

    Package manager (apt, rpm) firmano pacchetti con chiavi GPG, verificando provenienza da fonti 
ufficiali.
    App store (Apple, Google) usano firme per hash software, bloccando installazioni alterate.
 
    Repository Centrali

    Offrono update automatici sicuri da canali fidati, minimizzando supply chain attacks. Evitano 



download da siti
    non verificati, simili a restrizioni app store su sideload.
 
    Controllo Accesso

    Limitano installazioni a fonti approvate, gestendo permessi e dipendenze. Trend: OS integrano 
package
    manager come app store per ecosistemi chiusi ma sicuri
 
    Confronto :
    
    | Feature | Package Manager                          | App Store                              |
    | ------- | ------------------------------
    | Firma   | GPG keys (apt/rpm) Securing-Software.htm | Private key hash Securing-Software.htm |
    | Update  | Automatici sicuri Securing-Software.htm  | Centralizzati Securing-Software.htm    |
    | Limiti  | Repo ufficiali Securing-Software.htm     | No sideload Securing-Software.htm      |
Corretto.
 
8)  Contro quale tipo di minaccia aiuta a difendersi l’uso del campo Content-Security-Policy (CSP) nel 
nostro codice sorgente?

R)  Il campo Content-Security-Policy (CSP) difende principalmente contro Cross-Site Scripting (XSS), 
bloccando 
    inline script e risorse esterne non autorizzate. Specifica sorgenti per script, stili e connessioni, 
prevenendo 
    esecuzione di codice malevolo iniettato.

    Blocco Inline Script

    CSP con script-src 'self' permette solo script da file del dominio, bloccando 
<script>alert('xss')</script> inline
    da XSS. Previene eval o caricamenti esterni.
    
    Controllo Risorse

    Header come Content-Security-Policy: script-src https://sguaff.com limita a domini fidati, fermando 
fetch 
    cross-domain o stili malevoli. Anche connect-src self blocca richieste outbound. 

    Esempi Protezione

    script-src 'self': Solo script locali, no inline.

    style-src 'self': Blocca CSS inline/esterne.

    vedi Tabaella :  

https://sguaff.com/


    | Direttiva CSP | Minaccia Bloccata | Esempio Header Securing-Software.htm |
    | ------------- | ----------------- | ------------------------------
    | script-src    | Inline XSS        | script-src httpssguaff.com           |
    |connect-src   | Fetch cross-site  | connect-src self                      |
Molto buono. CSP spiegata bene, anche troppo in dettaglio.
 
9)  Fornisci un esempio concreto di una situazione in cui potresti voler usare il metodo HTTP POST 
invece del metodo GET.

R)  Un esempio concreto è l'acquisto di un prodotto su un e-commerce come Amazon, dove un link 
GET semplice 
    può essere abusato in un attacco CSRF tramite un tag img malevolo. Usa POST con un form per 
nascondere parametri
    sensibili come l'ID prodotto nell'URL e richiedere un'azione intenzionale.

    Protezione CSRF

    GET espone parametri (es. https://amazon.it/dp/), caricabili involontariamente via
    <img src="...">causando acquisti non autorizzati. POST nel form richiede submit esplicito: 
    <form method="post" action="..."><input name="dp" value="B07XLQ2FSK"><button>

   Vantaggi POST

   Parametri nel body, non URL, prevengono log sensibili e accessi accidentali. Aggiungi CSRF token
   per extra sicurezza: <input name="csrftoken" value="1234abcd">.
   
   Vedi tabella : 

  | Metodo | Esempio URL/Form   | Rischio CSRF Securing-Software.htm |
  | ------ | ------------------ | ------------------------------
  | GET    | /buy?dp=B07XLQ2FSK | Alto (img tag)                     |
  | POST   | <form method=post> | Basso (richiede click)             |
Buona. Ma leggermente forzata. POST diverso da protezione CSRF

10) Heartbleed (CVE-2014-0160)
    Il bug noto come Heartbleed, scoperto nel 2014, generò un’enorme preoccupazione su Internet: fu 
uno dei primi casi
    in cui una vulnerabilità informatica venne diffusa anche dai media generalisti, mentre i ricercatori di 
sicurezza 
    cercavano di avvisare il pubblico e incoraggiare un aggiornamento urgente dei sistemi.Leggi 
informazioni su Heartbleed,
    ad esempio dalla pagina Wikipedia o da altre fonti affidabili (come un video divulgativo).
    Perché Heartbleed rappresentava una minaccia così grave per la sicurezza degli utenti?

 R) Heartbleed (CVE-2014-0160) era grave perché permetteva a un attaccante remoto di leggere fino a 

https://amazon.it/dp/B07XLQ2FSK
http://httpssguaff.com/


64KB di memoria
    server per richiesta heartbeat TLS, leakando dati sensibili come chiavi private senza privilegi o 
autenticazione.
    
    Colpiva OpenSSL 1.0.1-1.0.1f, usato dal 17% dei server HTTPS, esponendo password, cookie e 
certificati per oltre
    due anni.

    Meccanismo Vulnerabilità

    Mancato controllo bounds prima di memcpy() in heartbeat: l'attaccante invia lunghezza falsa (es. 
64KB invece di
    3 byte), server copia memoria extra e la restituisce. Ripetibile per estrarre dati critici come session 
keys.

    Impatto Massiccio

    Esposizione chiavi private: decrittazione traffico passato/futuro, impersonificazione siti.
    Dati rubati: credenziali, carte credito, record medici; difficile rilevare.
    Vulnerabile 24-55% siti HTTPS; attacco facile con PoC, persistente da 2012.

    Conseguenze Utenti

    Richiedeva cambio password globali, reissuing certificati (costo centinaia milioni), panico mediatico
    per breach silenti su VPN/VOIP interni. Persiste su legacy systems.

    | Aspetto      | Rischio Principale   | Esempio Conseguenza owasp+1     |
    | ------------ | -------------------- | ------------------------------
    | Accesso      | Remoto, anonimo      | Leak chiavi private senza login |
    | Dati Esposti | Memoria heap casuale | Password, cookie, certificati   |
    | Durata       | Oltre 2 anni         | Breach retroattivi possibili    |
    | Mitigazione  | Patch + revoke certs | Cambio password worldwide       |

Ottimo. quasi da presentazione OWASP. Fuori scala per un quiz


	Securing Software Esercitazione
	Risposte:

